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Increasing availability and advancements of aerial Light Detection and Ranging
(LiDAR) data have radically been shifting the way archeological surveys are per-
formed. Unlike optical remote sensing imagery, LiDAR pulses travel through small
gaps in dense tree canopies enabling archeologists to discover “hidden” past settle-
ments and anthropogenic landscape features. While LiDAR has been increasingly
adopted in archeological studies worldwide, its full potential is still being explored
in the United States. Furthermore, while hand-digitizing features in remote-sensing
datasets remain a valuable method for archeological surveys, it is often time- and labor
intensive. The central objective of this research is to develop a geographic object-based
image analysis-driven methodological framework linking low-level features and
domain knowledge to automatically extract targets of interest from LiDAR-based
digital terrain models (DTMs) and to closely examine the degree of interoperability
of knowledge-based rulesets across different study sites focusing on the same semantic
class. We apply this framework in southern New England, a geographic region in the
northeastern United States where numerous seventeenth-century to early twentieth-
century features such as relict charcoal hearths (RCHs), stone walls, and building
foundations lie abandoned in densely forested terrain. Focusing on RCHs in this study,
our results show promising agreement between manual and automated detection of
these features. Overall, we show that the use of LiDAR data augmented with object-
based classification workflows provides valuable baseline data for future archeological
study and reconstruction of land-use/land-cover change over the past 300 years.

Keywords: LiDAR; GEOBIA; New England; relict charcoal hearths; historical
archaeology

1. Introduction

LiDAR has recently become an essential tool in archeological studies on a global scale,
particularly in areas with densely forested landscapes (Chase et al. 2011; Crow et al. 2007;
Doneus et al. 2008; Evans et al. 2013; Gallagher and Josephs 2008; Howey et al. 2016;
Johnson and Ouimet 2014; Lasaponara and Masini 2009; Millard et al. 2009; Opitz et al.
2015; Randall 2014). Its use in the United States has grown markedly in the past few
years, and the increasing availability of high-resolution data has begun to revolutionize
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traditional methods of time-intensive field surveys to identify cultural landscape features
(Prufer and Thompson 2016). Ongoing development of a variety of visualization techni-
ques has allowed users to identify increasing types and numbers of archeological land-
scape features as well (Bennett et al. 2012; Challis, Forlin, and Kincey 2011; Hesse 2010;
Kokalj, Zakšek, and Oštir 2011; McCoy, Asner, and Graves 2011). Manual digitization of
features coupled with field validation has been a common method of mapping and
analysis; however, many studies have also begun to benefit from preliminary automated
extraction methods for specific identified features (Cowley 2012).

Various methods have been developed to automatically extract, classify, or charac-
terize various objects (particularly in forestry) as well as cultural features from the
surrounding landscape surveyed with LiDAR (Antonarakis, Richards, and Brasington
2008; Blanchard, Jakubowski, and Kelly 2011; Chen and Hay 2011; Cowley 2012; Luo
et al. 2014; Smits et al. 2012). Some techniques may be difficult to broadly apply to all
study regions due to the differences in landscape type, vegetation, slope, and topogra-
phy. In terms of archeology, many of these currently published methods extract sphe-
rical or round archeological landscape features such as mound structures, pit features, as
well as charcoal hearths (Howey et al. 2016; Schneider et al. 2015; Trier, Zortea, and
Tonning 2015; Trier, Larsen, and Solberg 2009; Trier and Pilø 2012). These methods
generally use supervised classification or delineation techniques coupled with imagery
to process the data. While objects such as individual trees and associated forest structure
and buildings have been identified and extracted using geographic object-based image
analysis (GEOBIA) (e.g., Blaschke et al. 2014; Chen and Hay 2011), only a few studies
(e.g., Verhagen and Drăguţ 2012) have utilized GEOBIA to extract archeological
features of interest from LiDAR data.

Compared to traditional per-pixel based methods, GEOBIA has proven to be one
of the most powerful innovations in modern remote sensing for classification and
analysis of very high spatial resolution imagery as well as harmonizing other remote-
sensing data products such as dense point clouds. The central objective of this
research is to develop a GEOBIA-driven methodological framework linking low-
level motifs and domain knowledge (Gu et al. 2017) to extract archeological targets
of interest from LiDAR-based digital terrain models (DTMs) and to closely examine
the degree of interoperability of knowledge-based rulesets across different study sites
focusing on the same semantic class.

The GEOBIA-driven methodological framework presented in this study is applied in
southern New England, a geographic region in the northeastern United States. Southern New
England harbors a unique historical and geomorphological landscape that preserves a dramatic
transformation of widespread seventeenth to early twentieth-century deforestation and agricul-
ture followed by abandonment and reforestation. Publicly available LiDAR point clouds and
derivative DTMs have revolutionized the ability to identify abandoned archeological features
below the forest canopy in this region (Johnson and Ouimet 2014). Notable features include
stone walls and building foundations, which indicate settlement areas and fields used for
agriculture and pasture, and relict charcoal hearths (RCHs), which are relatively flat, circular/
elliptical platforms built for facilitating the production of charcoal from forest hardwoods and
softwoods (Johnson, Ouimet, and Raslan 2015; Raab et al. 2017). The particular focus of this
study is on the combination of LiDAR and GEOBIA for semi-/full-automated detection of
RCHs. The overall goals of this study are to (1) present a conceptual framework and imple-
mentation of GEOBIA for detection of RCHs in southern New England; (2) report on image
segmentation, rule-set transferability, and classification accuracy assessment; and (3) discuss the
potential of GEOBIA in semi-/full-automated detection, transferability of object-based rulesets,
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opportunities for migrating the proposed conceptual framework to an operational context, and
implications for historical archeology studies in the region and in other areas where similar types
of features are found.

2. Materials and methods

2.1. Study area and remote sensing data

Our two study sites are in the northwestern corner of the state of Connecticut, which lies
in the northeastern United States (Figure 1). This region is generally characterized by
undulating topography dominated with dense tree cover composed of northern hardwoods
and deciduous forest (Foster et al. 2008). Each of the two study sites covers 10 km2 and
contains nearly 1000 RCHs (Figure 2). These sites were previously mapped as part of a
broader investigation of seventeenth to early twentieth century archeological features
preserved below the forest canopy throughout areas of Connecticut (Johnson and
Ouimet 2014; Johnson, Ouimet, and Raslan 2015; Johnson and Ouimet 2016), but in
each case, identification and mapping of archeological features (including RCHs) were
done by hand-digitization.

In some locations of northwestern Connecticut, hand-digitization found there to be
>100 charcoal hearths per km2 (Johnson, Ouimet, and Raslan 2015). The reason for the
high concentration of RCHs in northwestern Connecticut is because iron mining and
subsequent processing was a primary industry in the late eighteenth to late nineteenth
century. Prior to the arrival of coal from other regions of the eastern United States
beginning in the late nineteenth century, charcoal was produced through local deforesta-
tion near RCH sites and was the primary source of fuel for iron furnaces. Recent field

Figure 1. Study sites with slope (left, derived from a 2011 ground-classified LiDAR DTM) and
aerial imagery (right, acquired in Summer 2012).
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studies have focused on the stratigraphy and soil properties of RCHs in the study region
(Raab et al. 2017; Hirsch et al. 2017) but the full extent of their distribution and spatial
variation throughout the northeast is not known. Iron mining and high concentrations of
associated RCHs also occurred in the neighboring states of Massachusetts, New York, and
Vermont.

We use LiDAR data as the primary data source in terrain modeling. LiDAR datasets are
publically available for the entire states of Connecticut and Massachusetts and parts of New
York and Vermont. The LiDAR dataset considered here for northwestern Connecticut was
not flown specifically for this study but rather is publicly available on https://earthexplorer.
usgs.gov/. The dataset was collected under leaf-off conditions in 2011 through the USDA
Natural Resources Conservation Service and has an average point spacing of ~2 points per
square meter and 1-m pixel resolution in derivative DTMs (Dewberry 2011). Point spacing
and resolution are both crucial elements of feature extraction because many archeological
landscape features can only be resolved with a resolution of 1 m or better due to their size or
shape. RCHs are typically 7–12 m in diameter, but a crucial aspect to their identification is a
surrounding ditch or upper/lower lip characterized by locally high slope that is only 1–2 m
wide. Such morphology is not visible in datasets that have lower resolutions of 3, 5, or
10 m. Air photos and the most updated land-use and cover information for the study areas
was accessed via http://clear.uconn.edu/.

Figure 2. Historical photo showing actual charcoal hearth (RCH) (courtesy Cornwall Historical
Society) (a), field photo shows present day appearance under dense tree canopies (b), slope (c), and
corresponding elevation profile of an RCH (d).
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Our approach uses the GEOBIA framework. Over the last decade, GEOBIA has been
described as the most innovative novel paradigm in modern remote-sensing data proces-
sing (Arvor et al. 2013). It has been applied in a wide range of studies ranging from
mapping refugees in east Africa (Lang et al. 2010) to documenting penguin guano in
Antarctica (Witharana and Lynch 2016), to modeling 3D halite crystals in mud rock
samples (Leitner, Peter, and Robert 2014).

GEOBIA attempts to mimic the cognitive processes that humans use in image inter-
pretation, either replicating and/or surpassing the accuracies of expert interpretations via
semi- or fully automated workflows (Hay et al. 2005; Blaschke 2010; Marpu et al. 2010).
This paradigm has evolved in response to the proliferation of very high-resolution satellite
imagery and is now widely acknowledged as an important component of multifaceted RS
applications (Jyothi, Babu, and Murali Krishna 2008; Blaschke 2010; Smith and Morton
2010; Kim et al. 2011; Witharana and Civco 2014). GEOBIA involves more than
sequential feature extraction (Lang et al. 2008). It furnishes a cohesive methodological
platform for machine-based characterization and classification of spatially relevant, real-
world entities by using multiscale regionalization techniques augmented with nested
representations and rule-based classifiers (Lang et al. 2008; Hagenlocher, Lang, and
Tiede 2012).

GEOBIA does not rely on individual pixels but rather pixel groups that are mean-
ingfully cross-pollinated by spectral, textural, geometric, topological, and contextual
information. Indeed, one issue in archeological automated extraction techniques has
been a lack of contextual information for landscape features, often supplemented by
human interpretation (Cowley 2012). From an implementation perspective, GEOBIA is
twofold: (1) segmentation and (2) classification. While the former involves creation of
image objects using segmentation algorithms, the latter attempts to a semantically map
“image” objects to “real-world” objects. Overall, re-segmentation and reclassification
provide an expert-based iterative refining model for the classes in question. Our
GEOBIA-centered approach to classify RCHs from LiDAR data is shown in Figure 3.
This approach attempts to make a meaningful link between low-level image features
associated with RCHs encoded in LiDAR-derived terrain models and high-level class
labels via multiscale segmentation and knowledge-mounted rulesets.

2.2. Data processing

We used ground-classified LiDAR to create 1 m resolution DTMs for candidate study
sites. DTMs were then used to produce slope and curvature rasters, which were run
through several mathematical morphological operations to better highlight the targets of
interest prior to the segmentation process. Use of that method provides additional cues to
better operate the segmentation algorithm and yield image segments (image object
candidates) with meaningful correspondence to real-world objects. Mathematical mor-
phology (MM) explores the geometric structure of an image in nonlinear fashion (Serra
1982; Dougherty and Lotufo 2003). MM is a well-established image processing frame-
work with its own application merits (Vincent 1994; Soille and Pesaresi 2002; Pesaresi
and Benediktsson 2001; Kemper et al. 2011; Pesaresi et al. 2013), however, in this study,
we utilized MM operators as preprocessing instruments in the GEOBIA. Erosion and
dilation are the most fundamental operations in morphological image processing. While
the former erodes the bright areas of the image and expands the dark zones, the latter
dilates the bright areas and shrinks the dark areas. Gradient is another MM operator that is
useful to find the outline of structures. Based on a series of MM filtering operations, we
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selected erosion and gradient as useful operators to create additional rasters from the slope
map. We tested a Canny edge detector over the slope raster itself and curvature raster and
realized that Canny performs better over the curvature raster.

2.3.1. Image segmentation

Image segmentation is the most decisive step in GEOBIA as it paves the way to viable
classification results. The key idea of segmentation is to decompose a complex image-
scene into nonoverlapping homogeneous regions with nested and scaled representations in
scene space (Lang 2008; Kim et al. 2011; Tong et al. 2012; Duro, Franklin, and Dubé
2012). Many segmentation algorithms have been developed and tested over the years.
There is no universal algorithm capable of producing perfect segments. There is always a
compromise between over-segmentation and under-segmentation. The former is preferred
over the latter (Witharana and Civco 2014). Segmentation is an inherently time- and
processor-intense procedure. A single-scale segmentation would not suffice since most of
the real-world objects and their semantics are embedded into multiple scales. In this study,
we utilized three segmentation algorithms: (1) multiresolution segmentation (MRS), (2)
contrast-spilt segmentation, and (3) chessboard segmentation (CBS) (one could view this
as a tessellation method than a standard segmentation algorithm), which are available in
the eCognition Developer (Trimble Geospatial, Munich) software package. Conceptual
basis and methodological implementation of above algorithms are well addressed in
literature. While encouraging referring to relevant articles, for the sake of readers’
convenience, below we provide short narratives of the candidate segmentation algorithms.

MRS (see Baatz and Schäpe 2000) is a relatively complex and image- and user-
dependent algorithm (Hay et al. 2003; Marpu et al. 2010; Witharana and Civco, 201;
Grybas, Melendy, and Congalton 2017). The MRS algorithm iteratively merges pixels
based on homogeneity criteria driven by three parameters: scale(s), shape, and

Figure 3. A schematic detailing the conceptual basis of our approach.
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compactness (Smith and Morton 2010; Liu et al. 2012; Tong et al. 2012), of which the
scale parameter is considered the most important one (Dorren, Maier, and Seijmonsbergen
2003; Smith 2010; Belgiu, Drǎguţ, and Strobl 2014). Contrast-split segmentation (CSS) is
a relatively less-complex and low-performing method compared to the MRS algorithm.
CSS is often applied in the image object domain to re-partition image objects belonging to
a certain class (i.e., class-specific segmentation). It groups pixels into dark and bright
regions (Trimble Germany GmbH 2014). CBS is one of the simplest methods to partition
an image into discrete units. It is basically a tessellation method that splits the pixel
domain or an image object domain into square image objects. A square grid aligned to the
image left and top borders of fixed size is applied to all objects in the domain and each
object is cut along these gridlines (Trimble Germany GmbH 2014). This method is
frequently used in fine-scale image object operations where one needs to obtain pixel-
level segments to use as seed image objects in processes such as image object fusion/
growing and boarder optimization.

2.3.2. RCH modeling workflow

The conceptual basis and the implementation architecture underlying the RCH modeling
process is progressively illustrate in Figures 3–5. We first processed LiDAR data to create
a DTM and then generated secondary products such as slope, curvature, and Canny edge
rasters. Morphological operators, such as erosion, dilation, and gradient, were then run on
the secondary products to generate tertiary image layers. For example, the slope raster was
subjected to the erosion operator to erode bright areas of the image and expand the dark
zones. In the class modeling process (Tiede et al. 2010), the first cycle progressively
decomposed the input image layers into meaningful image object candidates and the
remaining cycles entailed class-/object-specific segmentation. Subsequently, the remote-
sensing quantification (low-level image attributes) of image object candidates and domain
knowledge on RCHs (Ignatiadis 2016; Raab et al. 2017) was interfaced via a fuzzy rule-
based system. We used site-1 to build the master ruleset (Tiede et al. 2010) and later
repurposed it with and without adaptations over site-2 to explore the portability of the
master ruleset. Figure 4 is a detailed rendition showing how morphologically processed
rasters produce image object hierarchy and iteratively refine image object candidates into
RCHs. First, the MRS algorithm with large-scale parameter (s = 50) was run over the
slope raster to produce coarse segments. Basic slope thresholding was then applied to
exclude steep and flat segments from further processing with the assumption that RCHs
mostly appear on gentle slopes. When segmenting large areas, it is preferred to use large
values for the scale parameter as it noticeably reduces the MRS algorithm’s processing
time and provides more opportunities to repurpose segmentation methods over highly
localized image objects (Witharana and Lynch 2016).

After initial segmentation, we re-segmented coarse segments of gentle slope (super
objects) based on the erosion raster to small objects (sub-objects) roughly corresponding
to the targets of interest. Here, we used the MRS algorithm at the image object level at a
fine-scale setting (s = 5). This process successfully yielded small seed segments with
acceptable correspondence (size and shape) to RCH boundaries. In RCH modeling, based
on basic spectral, spatial, and hierarchical criteria, we treated these seed segments as the
RCH-like image objects. We identified the immediate neighbors of the RCH-like image
objects and re-segmented them based on the contrast-split algorithm and the gradient
raster (i.e., secondary processing of erosion raster using the gradient operator). The main
idea of this re-segmentation is to frame the sharp edges (front and back of the RCH) in the
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terrain that have resulted from disturbances (front-cut and back fill) incurred to the natural
slope during the construction of charcoal platform (Figures 4 and 5). The sub-objects
containing edges were further segmented to the pixel level by using the CBS algorithm.
Pixel-level image objects were used as seeds alongside the information from gradient and
Canny edge rasters to reconstruct distinct edges (or rims) encircling the RCH-like objects.
This step involves object fusion, reshaping, and coating, and other fine-scale object-level
operations.

Finally, classification of the RCH is achieved based on the refined RCH-like image
object characteristics. Figure 5 illustrates the formulation of the middleware ruleset based
on the findings of Johnson and Ouimet (2014), Ignatiadis (2016), and Raab et al. (2017),
which provide valuable details about RCHs such as architecture, morphology, original
setting, and evolution through time. As seen in the figure, each middleware rule makes a
meaningful connection between low-level image attribute(s) and class interpretation. For

Figure 4. Multiscale segmentation and class modeling of an example RCH.
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example, a property such as edge contrast reveals the presence or absence of a back cut or
a front cut in the RCH construction (Figure 5). In terms of MRS segmentation, we
practiced a quick trial-and-error approach to roughly find optimal values for the scale
parameter(s). Our premise was to obtain good (not perfect) segmentation results minimiz-
ing under-segmentation and time investments on objective scale-parameter optimization
procedures (Witharana and Civco 2014). We assessed the classification actuaries of our
automated detection based on the manual detection of Johnson, Ouimet, and Raslan
(2015) which used a similar LiDAR dataset to that in the present study. We randomly
placed 250 m × 250 m grid cells in the study areas to sample automated and manual
detections. Objective analysis was corroborated with thorough visual inspections to gauge
segmentation quality and assess final classification results.

2.3.3. Ruleset transferability

While GEOBIA expands the horizon for expert (domain) knowledge integration in fine
tuning the classification process, it makes the classification more susceptible for operator-/
scene-/target-dependency, which in turn hampers the repeatability and portability of rules
(Hofmann et al. 2015; Witharana and Lynch 2016). In this study, we tasked a basic-level
analysis of ruleset transferability centered on the framework proposed by Hofmann,
Blaschke, and Strobl (2011) for quantifying the robustness of fuzzy rulesets. Use of
fuzzy rules (which can take membership values between 0 and 1) is much favored in
object-based classification over crisp rules [which can take membership values

Figure 5. Middleware rules and their connection to the basic anatomy of an example RCH and
class modeling.
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constrained to two logical values “true”(=1) and “false”(=0)] because the “fuzzification”
of expert-steered thresholds improves transferability. A fuzzy function describing a
property p can be defined using α (lower border of p), β (upper border of p), a (mean
of membership function), and v (range of membership function). We used site-1 to
develop the master ruleset (reference ruleset) and applied it over site-2 with and without
adaptations to generally gauge the portability of the master ruleset. For the sake of clarity,
we briefly describe the relevant robustness measures proposed by Hofmann, Blaschke,
and Strobl (2011). More details behind this framework can be found in Hofmann,
Blaschke, and Strobl (2011) and Witharana and Lynch (2016). The fuzzy ruleset could
undergo three types of changes as Type C, Type O, and Type F, when a reference ruleset
(Rr) is repurposed as an adapted ruleset (Ra) over another image. Type C captures adding,
removing, or deactivating a class. Type O is responsible for changing the fuzzy-logic
connection of membership functions. Type F involves inclusion or exclusion (Type Fa)
and changing the range of fuzzy membership functions (Type Fb). The summation of
changes yields the total deviations (d) incurred during the adaptation of Rr to Ra

(Hofmann, Blaschke, and Strobl 2011).

d ¼
Xc

i¼1

Ci þ
Xo

i¼1

Oi þ
Xf a

i¼1

Fai þ
Xf b

i¼1

δFbi

δF ¼ δaþ δν

The robustness of the reference ruleset (r) can be estimated based on the total deviations
(d) and classification qualities of reference image (qr) and candidate image (qa) as follows:

rr ¼
qa=qr
da þ 1

3. Results

Classifying objects such as RCHs in the study region is the result of a sequential process
that utilizes different LiDAR-derived products, existing GIS layers, preprocessing meth-
ods, segmentation techniques, and domain knowledge (Figure 6). Coarse-scale segmenta-
tion based on the slope raster and fine-scale object-specific segmentation produces small
image objects that are then classified as RCH-like objects based on basic spectral, spatial,
spectral, and super-object characteristics (Figure 6(a)). Figure 6(b) shows how two RCH-
like objects (RCH-1 and RCH-2) are strategically refined into true RCH (RCH-1) and
false RCH (RCH-2). The presence of edges (based on Canny edge and gradient raster) as
semi-circular (lune shaped) objects surrounding RCH-like candidates serves as strong
cues on the image object refining process.

In some cases, the manual and automated detection both overlooked actual RCHs
(Figure 7). Of the five RCHs (A, B, C, D, E), both manual and automated detection
agreed on B, C, D, while the manual detection (Johnson, Ouimet, and Raslan 2015)
missed E, and the automated detection missed A. The automated method successfully
reconstructed the edges (see yellow arrow) of E; however, it failed to identify a sufficient
number of edges in A. It only identified the front-cut of that RCH in the edge images (see
magenta arrow). One possible reason the automated detection failed with the Canny edge
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detection and gradient rasters here is that there is a gradual slope in the LiDAR profile
(see circled area in the downslope) around A. When inspecting the gradient raster
(Figure 7(b)) and the Canny edge raster (Figure 7(c)) for E, it is noteworthy how
Canny edge detection has overlooked potential edges around E compared with the
gradient raster. Overall, the integration of Canny edge detection and gradient provided
the necessary filtering to reconstruct a sufficient edge lune around E.

The use of morphological filters played a critical role in the image segmentation
process (Figure 8). Figure 8(a) shows three RCH candidates (A, B, C) overlain over the

Figure 6. Multiscale modeling of image objects (a) initial identification and (b) fine-scale refining.
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slope raster and the morphologically eroded slope raster. Segmentation results based on
the slope raster and the eroded slope raster are shown as white and yellow lines,
respectively. When inspecting the overlap of these components, it is clear that segmenta-
tion based on the erosion raster provides a higher geometrical correspondence to real-
world object boundaries than that of the slope raster. This is very clear in rows B and C of
Figure 8(a), where segments of the erosion raster elegantly captured the outline of the
actual RCH while maintaining the shape and size. Such accurate delineation is critical in
proceeding with further classification steps because middleware rules are primarily driven
on size, shape, and area characteristics. Improper delineation could lead into misdetection.

In addition to confirming other manually detected features, the automated detection
also identified RCHs that manual detection had previously missed (Figure 9). Figure 9
shows classification results for two example grid cells from site-1. While Figure 9(a)
shows a perfect agreement between manual and automated detection, Figure 9(b) shows
disagreement between two approaches. Zoomed-in views of Figure 9(b) exhibit the
discovery of two RCHs, which were actually missed in the reference dataset of Johnson,
Ouimet, and Raslan (2015). Also, it reveals a miss detection of the automated approach,
perhaps due to the lack of distinct breaks (front cut and back fill) in the slopes. Table 1
reports classification accuracies for site-1 based on the master (reference) ruleset. Based
on the randomly sampled grid cells, the automated method recorded user’s and produ-
cer’s accuracies of 73% and 65%, respectively. Table 2 depicts the classification results
when the master ruleset repurposed over site-2 as it is (i.e., without adapting fuzzy
membership functions). Of the 70 reference RCHs, only 31 RCHs were classified
accurate. This leads to a high commission error or very low User’s accuracy (44.3%)
compared to the Producer’s accuracy (75.6%). As seen in Table 3, once the master
ruleset is fine tuned to site-2, we were able to achieve a noticeably lower commission
error and gained user’s and producer’s accuracies comparable to those of site-1

Figure 7. An example disagreement between manual detection and automated detection of RCHs.
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(Table 2). Table 4 reports the key changes made to the reference ruleset during the
adaptation. Of the five middleware rules, the slope is the only rule that exhibited a Type
Fb change. Based on the total deviations and classification accuracies, there is a
robustness of approximately 0.74.

Figure 8. Comparison of segmentation results based on slope raster and morphologically eroded
slope raster.
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4. Discussion

The purpose of this study was to explore the potential of GEOBIA using LiDAR data in
automated archeological mapping applications. To our knowledge, this is the first
GEOBIA-centered effort in RCH mapping from LiDAR-based DTMs as a viable

Figure 9. Zoomed-in views of two (a and b) example grid cells from site-1 showing classification
results. Figure part (a) shows a perfect agreement between manual (blue) and automated (yellow)
detection. Figure part (b) shows disagreement between two approaches. Green insets of figure part
(b) exhibit the discovery of two RCHs, which were missed in the reference dataset.

Table 1. Classification accuracies of site-1.

No. of selected RCHs from
random grid cells

Manual detection (based on Johnson, Ouimet, and Raslan 2015) 89
Automatic detection 100
Spatial correspondence between manual and automated detections 65
User’s accuracy (%) 73
Producer’s accuracy (%) 65

Table 2. Classification accuracies of site-2 based on the master ruleset.

No. of selected RCHs from
random grid cells

Manual detection (based on Johnson, Ouimet, and Raslan 2015) 70
Automatic detection 41
Spatial correspondence between manual and automated detections 31
User’s accuracy (%) 44.3
Producer’s accuracy (%) 75.6
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alternative to time- and labor-intense human-augmented image interpretation. Our analysis
serves not just as a standard classification workflow but centers on a cohesive conceptual
framework, showing the importance of other critical aspects like image preprocessing,
class modeling, adaptive segmentation, knowledge base, and transferability of fuzzy rules.

In our analysis, we experimented with and cross-pollinated traditional edge detectors,
mathematical morphological operators, complex to simple segmentation methods, and itera-
tive expert-based classification. Rather than relying on standard DTM-based products such as
slope, curvature, and hillshade in the workflow, we tested morphological operators such as
erosion, dilation, and gradient over slope rasters to better emphasize the features and distill
their distinct edges. Such morphologically improved images lead to better segmentation
results. As seen on Figure 8, the morphologically filtered slope raster (erosion) produced
better quality (good correspondence between the segment and the real-world object) image
object candidates than those of the original slope raster. This is because morphological
operations such as erosion highlight the boundaries of RCHs, allowing the MRS algorithm
to isolate those as homogeneous objects. Some RCHs are poorly defined in the slope raster
and blend with the topography. This may be due to insufficient LiDAR point densities,
prolonged erosion, or incorporation with other features such as access roads. We found that
morphological operations become very handy in highlighting fuzzy RCHs. It is critical to
capture the actual morphometry of the object in segmentation because in reality, RCHs have a
distinct size and shape; thus, the classification rules (Figure 5) are primarily governed by the
geometrical attributes of the image object candidates. Erroneous boundary delineation during
segmentation could potentially place the image object candidates in the wrong class.

Image object candidates that meet the criteria of flat surface, shape, and size do not
necessarily guarantee an accurate detection of RCHs. In many instances, the low-level
image object attributes could lead to false positives. It is noteworthy that mathematical
morphological operators could over-improve natural features as pseudo-RCHs. Therefore,
it is necessary to consider other characteristics as well to label a candidate image object as
an RCH. When studying the architecture of RCHs and analyzing LiDAR profiles across
RCHs, it is clear that an RCH is sandwiched between two breaks in the natural slope
(Figures 1 and 5). These distinct slope changes create an edge around the RCH.
Depending on the ground conditions and LiDAR point densities, this edge could be
continuous, discontinuous, or blended with the surrounding topography. In most
instances, two semi-circular (lune shaped) edges could be seen on either side of the
RCH (Figures 6 and 7). We identified this feature as an important contextual feature in
the refining of RCH-like object candidates (Figure 6). In order to meaningfully reconstruct
the edge, we manipulated pixel-level image objects from Canny edge and gradient images.

Segmentation serves as the precursory step in GEOBIA. Depending on the complexity of
the algorithm, segmentation could be a highly time-demanding task. To avoid unnecessary

Table 3. Classification accuracies of site-2 based on the adapted ruleset.

No. of selected RCHs from
random grid cells

Manual detection (based on Johnson, Ouimet, and Raslan 2015) 70
Automatic detection 82
Spatial correspondence between manual and automated detections 50
User’s accuracy (%) 71.4
Producer’s accuracy (%) 61.0
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time investments, we complemented MRS, which is a complex and time intensive method,
with the less time-demanding CSS and very simple CBS to produce multi-scale image object
candidates.While such hybrid approaches substantially cut down the processing time in large-
scale operations, they provide more opportunities to mobilize re-segmentations and reclassi-
fication tasks over highly localized image object candidates.

Classification results for site-1 based on the master ruleset are promising. We purpo-
sely avoided site-specificity of the master ruleset, i.e., tasking an optimal set of rules. One
could gain higher accuracies via the overwhelming number of rules at the expense of poor
transferability. Table 1 reveals comparatively higher user’s accuracies than producer’s
accuracies. This may be due to the conservative nature of the master ruleset. More
stringent constraints along with more detailed border processing could lower the commis-
sion and omission errors. Repurposing the master ruleset on site-2 as it is (Table 2)
returned poor classification results. Ideally, we would expect the same level of accuracies
for site-2 or better compared to site-1. However, this is not surprising because the terrain
characteristics change from site-1 to site-2. It is interesting to see how the classification
accuracies (Table 3) improved when the ruleset was adapted. We had to make very few
changes to the master ruleset (Table 4). This reflects the degree of adaptability in our
middleware rules. However, we emphasize the fact that it is too early to strongly claim the
success of our ruleset, especially within the context of transferability. Here, we tested the
master ruleset over one study site. To fully understand the transferability, it is necessary to
test the master ruleset over a series of sites with varying characteristics. In addition, to
address the variability across underlying data, it is important to test the performances of
master ruleset over multiple LiDAR datasets (either from multiple acquisitions/modes or
synthesizing different point densities from the parent point cloud) with different point
densities. In future developments, we will apply this master ruleset over large areas and
across LiDAR datasets to see how it performs and explores ways to increase its produc-
tivity. As new and higher resolution LiDAR datasets come online for states throughout the
northeastern United States where RCHs are found, there may also be new opportunities
for improved RCH characterization and refinement of the GEOBIA workflow discussed
here.

Undoubtedly, GEOBIA has become a revolutionary framework in modern remote-
sensing image processing, as it opens the horizon to integrate domain knowledge via
rulesets. However, this fascinating feature itself becomes the main challenge in
GEOBIA. Witharana and Lynch (2016) viewed this as GEOBIA’s Achilles’ heel – the
semantic gap (lack of explicit link) – impedes repeatability, transferability, and inter-
operability of classification workflows. On the one hand, the rule-based classification
reduces the semantic gap. On the other hand, it leads to plurality of solutions and
hampers the transferability due to the need for significant operator involvement
(Hofmann et al. 2015). As a result, it is necessary to pursue alternative directions to
meet classification needs. Although mathematical morphological operations were used in
image filtering prior to segmentation, we have noticed that those operations work well
on slope images. MM is a distinct image processing domain with its own merits. This
has been successfully used in gray-scale image processing. Some of the highlighted
remote-sensing applications based on high-resolution imagery include damaged building
detection (Al-Khudhairy, Caravaggi, and Giada 2005), refugee camp mapping (Kemper
et al. 2011), and land-use mapping (Pesaresi et al. 2013). Given the distinct morpho-
metry of RCHs, we think that probing a structuring element across morphologically
filtered images would be another way to classify RCHs. Thus, in future research, we
aim to test MM as a classification tool.
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In summary, exploratory studies like ours provide valuable baseline information about
best available remote-sensing tools and their opportunities and challenges, not only in
targeted automation like RCH characterization but remote-sensing-based mapping of
archeological features in a broader context.

5. Conclusion

This study explores the potential of object-based image analysis methods to automatically
extract RCHs from LiDAR-based DTMs as a viable alternative to time- and labor-intense
human-augmented image interpretation. We combined standard terrain-based rasters,
morphological filtering methods, different segmentation algorithms, and knowledge base
classification to automatically extract RCHs. We further systematically gauged the classi-
fication accuracies and transferability of the object-based rules. Overall, our results are
promising. We were able to capture targets of interest with an acceptable accuracy level.
We were able to successfully repurpose the main workflow in another area, incurring
minimal deviations to the master ruleset.

Datasets generated by this approach provide valuable baseline data for further histor-
ical archeological study and understanding of land-use/land-cover change throughout
southern New England over the past ~350 years. The analysis, preservation, and con-
servation of historical features in southern New England are critical. New England is host
to one of the densest human populations in the nation, yet heavily forested regions still
persist. LiDAR-based mapping and feature extraction allow for datasets of historic
features to be created that aid historical preservation efforts and transform conservation
and cultural resource management initiatives in the region by enabling scientists, arche-
ologists, and concerned groups to locate, research, catalogue, and demarcate the features,
as well as their material sources and impact.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This work was supported by National Science Foundation grant: [Grant Number BCS-1654462].

ORCID

Katharine M. Johnson http://orcid.org/0000-0001-7530-762X

References
Al-Khudhairy, D. H. A., I. Caravaggi, and S. Giada. 2005. “Structural Damage Assessments from

Ikonos Data Using Change Detection, Object-Oriented Segmentation, and Classification
Techniques.” Photogrammetric Engineering & Remote Sensing 71 (7): 825–837.
doi:10.14358/PERS.71.7.825.

Antonarakis, A. S., K. S. Richards, and J. Brasington. 2008. “Object-Based Land Cover
Classification Using Airborne LiDAR.” Remote Sensing of Environment 112: 2988–2998.
doi:10.1016/j.rse.2008.02.004.

Arvor, D., L. Durieux, S. Andrés, and M.-A. Laporte. 2013. “Advances in Geographic Object-Based
Image Analysis with Ontologies: A Review of Main Contributions and Limitations from A

200 C. Witharana et al.

https://doi.org/10.14358/PERS.71.7.825
https://doi.org/10.1016/j.rse.2008.02.004


Remote Sensing Perspective.” ISPRS Journal of Photogrammetry and Remote Sensing 82: 125–
137. doi:10.1016/j.isprsjprs.2013.05.003.

Baatz, M., and M. Schäpe. 2000. “Multiresolution Segmentation – An Optimization Approach for
High Quality Multi-Scale Image Segmentation.” In Angewandte Geographische Informations-
Verarbeitung XII, edited by J. Strobl, T. Blaschke, and G. Griesebner, 12–23. Karlsruhe:
Wichmann Verlag.

Belgiu, M., L. Drǎguţ, and J. Strobl. 2014. “Quantitative Evaluation of Variations in Rule-Based
Classifications of Land Cover in Urban Neighbourhoods Using WorldView-2 Imagery.” ISPRS
Journal of Photogrammetry and Remote Sensing 87 (2014): 205–215. doi:10.1016/j.
isprsjprs.2013.11.007.

Bennett, R., K. Welham, R. A. Hill, and A. Ford. 2012. “A Comparison of Visualization Techniques
for Models Created from Airborne Laser Scanned Data.” Archaeological Prospection 19: 41–
48. doi:10.1002/arp.v19.1.

Blanchard, S. D., M. K. Jakubowski, and M. Kelly. 2011. “Object-Based Image Analysis of
Downed Logs in Disturbed Forested Landscapes Using Lidar.” Remote Sensing 3: 2420–
2439. doi:10.3390/rs3112420.

Blaschke, T. 2010. “Object Based Image Analysis for Remote Sensing.” ISPRS Journal of
Photogrammetry and Remote Sensing 65 (1): 2–16. doi:10.1016/j.isprsjprs.2009.06.004.

Blaschke, T., G. J. Hay, M. Kelly, S. Lang, P. Hofmann, E. Addink, R. Queiroz Feitosa, et al. 2014.
“Geographic Object-Based Image Analysis – Towards a New Paradigm.” ISPRS Journal of
Photogrammetry and Remote Sensing 87 (2014): 180–191. doi:10.1016/j.isprsjprs.2013.09.014.

Challis, K., P. Forlin, and M. Kincey. 2011. “A Generic Toolkit for the Visualization of
Archaeological Features on Airborne LiDAR Elevation Data.” Archaeological Prospection
18: 279–289. doi:10.1002/arp.v18.4.

Chase, A. F., D. Z. Chase, J. F. Weishampel, J. B. Drake, R. L. Shrestha, K. C. Slatton, J. J. Awe,
and W. E. Carter. 2011. “Airborne LiDAR, Archaeology, and the Ancient Maya Landscape at
Caracol, Belize.” Journal of Archaeological Science 38: 387–398. doi:10.1016/j.
jas.2010.09.018.

Chen, G., and G. J. Hay. 2011. “An Airborne Lidar Sampling Strategy to Model Forest Canopy
Height from Quickbird Imagery and GEOBIA.” Remote Sensing of Environment 115: 1532–
1542. doi:10.1016/j.rse.2011.02.012.

Cowley, D. C. 2012. “In with the New, Out with the Old? Auto-Extraction for Remote Sensing
Archaeology.” In: Proceedings of SPIE, edited by C. R. Bostater, S. P. Mertikas, X. Neyt, C.
Nichol, D. Cowley, and J.-P. Bruyant, 853206-1–853206-9. Vol. 8532. Edinburgh : SPIE
Remote Sensing.

Crow, P., S. Benham, B. J. Devereux, and G. S. Amable. 2007. “Woodland Vegetation and Its
Implications for Archaeological Survey Using LiDAR.” Forestry 80: 241–252. doi:10.1093/
forestry/cpm018.

Dewberry. 2011. “Project Report for the U.S. Corps of Engineers High Resolution LiDAR Data
Acquisition and Processing for Portions of Connecticut.” Prepared for USDA-NRCS,
September 2011.

Doneus, M., C. Briese, M. Fera, and M. Janner. 2008. “Archaeological Prospection of Forested
Areas Using Full-Waveform Airborne Laser Scanning.” Journal of Archaeological Science 35:
882–893. doi:10.1016/j.jas.2007.06.013.

Dorren, L. K. A., B. Maier, and A. C. Seijmonsbergen. 2003. “Improved Landsat-Based Forest
Mapping in Steep Mountainous Terrain Using Object-Based Classification.” Forest Ecology and
Management 183 (1–3): 31–46. doi:10.1016/S0378-1127(03)00113-0.

Dougherty, E. R., and R. A. Lotufo. 2003. Hands on Morphological Image Processing, 272.
Bellingham: SPIE Press.

Duro, D. C., S. E. Franklin, and M. G. Dubé. 2012. “A Comparison of Pixel-Based and Object-
Based Image Analysis with Selected Machine Learning Algorithms for the Classification of
Agricultural Landscapes Using SPOT-5 HRG Imagery.” Remote Sensing of Environment 118
(2012): 259–272. doi:10.1016/j.rse.2011.11.020.

Evans, D. H., R. J. Fletcher, C. Pottier, J.-B. Chevance, D. Soutif, B. S. Tan, S. Im, et al. 2013.
“Uncovering Archaeological Landscapes at Angkor Using Lidar.” Proceedings of the National
Academy of Sciences 110: 12595–12600. doi:10.1073/pnas.1306539110.

Foster, D. R., B. Donahue, D. Kittredge, G. Motzkin, B. Hall, B. Turner, and E. Chilton. 2008.
“New England’s Forest Landscape: Ecological Legacies and Conservation Patterns Shaped by

GIScience & Remote Sensing 201

https://doi.org/10.1016/j.isprsjprs.2013.05.003
https://doi.org/10.1016/j.isprsjprs.2013.11.007
https://doi.org/10.1016/j.isprsjprs.2013.11.007
https://doi.org/10.1002/arp.v19.1
https://doi.org/10.3390/rs3112420
https://doi.org/10.1016/j.isprsjprs.2009.06.004
https://doi.org/10.1016/j.isprsjprs.2013.09.014
https://doi.org/10.1002/arp.v18.4
https://doi.org/10.1016/j.jas.2010.09.018
https://doi.org/10.1016/j.jas.2010.09.018
https://doi.org/10.1016/j.rse.2011.02.012
https://doi.org/10.1093/forestry/cpm018
https://doi.org/10.1093/forestry/cpm018
https://doi.org/10.1016/j.jas.2007.06.013
https://doi.org/10.1016/S0378-1127(03)00113-0
https://doi.org/10.1016/j.rse.2011.11.020
https://doi.org/10.1073/pnas.1306539110


Agrarian History.” In: Agrarian Landscapes in Transition: Comparisons of Long-Term
Ecological & Cultural Change, edited by C. R. Redman and D. R. Foster, 44–88. New York:
Oxford University Press.

Gallagher, J. M., and R. L. Josephs. 2008. “Using LiDAR to Detect Cultural Resources in a Forested
Environment: An Example from Isle Royale National Park, Michigan, USA.” Archaeological
Prospection 15: 187–206. doi:10.1002/arp.v15:3.

Grybas, H., L. Melendy, and R. G. Congalton. 2017. “A Comparison of Unsupervised Segmentation
Parameter Optimization Approaches Using Moderate- and High-Resolution Imagery.”
GIScience & Remote Sensing 54 (4): 515–533. doi:10.1080/15481603.2017.1287238.

Gu, H., H. Li, L. Yan, Z. Liu, T. Blaschke, and U. Soergel. 2017. “An Object-Based Semantic
Classification Method for High Resolution Remote Sensing Imagery Using Ontology.” Remote
Sensing 9 (4): 329. doi:10.3390/rs9040329.

Hagenlocher, M., S. Lang, and D. Tiede. 2012. “Integrated Assessment of the Environmental Impact
of an IDP Camp in Sudan Based on Very High Resolution Multi-Temporal Satellite Imagery.”
Remote Sensing of Environment 126: 27–38. doi:10.1016/j.rse.2012.08.010.

Hay, G. J., G. Castilla, M. A. Wulder, and J. R. Ruiz. 2005. “An Automated Object-Based Approach
for the Multiscale Image Segmentation of Forest Scenes.” International Journal of Applied
Earth Observation and Geoinformation 7 (4): 339–359. doi:10.1016/j.jag.2005.06.005.

Hay, G. J., T. Blaschke, D. J. Marceau, and A. Bouchard. 2003. “A Comparison of Three Image-Object
Methods for the Multiscale Analysis of Landscape Structure.” ISPRS Journal of Photogrammetry
and Remote Sensing 57 (5–6): 327–345. doi:10.1016/S0924-2716(02)00162-4.

Hesse, R. 2010. “LiDAR-derived Local Relief Models – A New Tool for Archaeological
Prospection.” Archaeological Prospection 17: 67–72.

Hirsch, F., T. Raab, W. Ouimet, D. Dethier, A. Schneider, and A. Raab. 2017. “Soils on Historic
Charcoal Hearths: Terminology and Chemical Properties.” Soil Science Society of America
Journal 81: 1427. doi:10.2136/sssaj2017.02.0067.

Hofmann, P., P. Lettmayer, T. Blaschke, M. Belgiu, S. Wegenkittl, R. Graf, T. J. Lampoltshammer,
and V. Andrejchenko. 2015. “Towards a Framework for Agent-Based Image Analysis of
Remote-Sensing Data.” International Journal of Image and Data Fusion 6 (2): 115–137.
doi:10.1080/19479832.2015.1015459.

Hofmann, P., T. Blaschke, and J. Strobl. 2011. “Quantifying the Robustness of Fuzzy Rule Sets in
Object-Based Image Analysis.” International Journal of Remote Sensing 32 (22): 7359–7381.
doi:10.1080/01431161.2010.523727.

Howey, M. C. L., F. B. Sullivan, J. Tallant, R. Vande Kopple, and M. W. Palace. 2016. “Detecting
Precontact Anthropogenic Microtopographic Features in A Forested Landscape with Lidar: A
Case Study from the Upper Great Lakes Region, AD 1000–1600.” PLoS One 11: 1–11.
doi:10.1371/journal.pone.0162062.

Ignatiadis, M. E. 2016. Charcoal-Rich Mounds in Litchfield County CT Record Widespread
Hillslope Disturbance in the Iron Corridor from Mid 18th to Early 20th Centuries.
Williamstown: Williams College.

Johnson, K. M., and W. B. Ouimet. 2014. “Rediscovering the Lost Archaeological Landscape of
Southern New England Using Airborne Light Detection and Ranging (Lidar).” Journal of
Archaeological Science 43: 9–20. doi:10.1016/j.jas.2013.12.004.

Johnson, K. M., and W. B. Ouimet. 2016. “Physical Properties and Spatial Controls of Stone Walls
in the Northeastern USA: Implications for Anthropocene Studies of 17th to Early 20th Century
Agriculture.” Anthropocene 15: 22–36. doi:10.1016/j.ancene.2016.07.001.

Johnson, K. M., W. B. Ouimet, and Z. Raslan. 2015. “Geospatial and LiDAR-based Analysis of
18th to Early 20th Century Timber Harvesting and Charcoal Production in Southern New
England.” Geological Society of America Abstracts with Programs 47: 65.

Jyothi, B. N., G. R. Babu, and L. V. Murali Krishna. 2008. “Object Oriented and Multi-Scale Image
Analysis: Strengths, Weaknesses, Opportunities and Threats-A Review.” Journal of Computer
Science 4 (9): 706–712. doi:10.3844/jcssp.2008.706.712.

Kemper, T., M. Jenerowicz, M. Pesaresi, and P. Soille. 2011. “Enumeration of Dwellings in Darfur
Camps from GeoEye-1 Satellite Images Using Mathematical Morphology.” IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing 4 (1): 8–15. doi:10.1109/
JSTARS.2010.2053700.

Kim, M., T. A. Warner, M. Madden, and D. S. Atkinson. 2011. “Multi-Scale GEOBIA with Very
High Spatial Resolution Digital Aerial Imagery: Scale, Texture and Image Objects.”

202 C. Witharana et al.

https://doi.org/10.1002/arp.v15:3
https://doi.org/10.1080/15481603.2017.1287238
https://doi.org/10.3390/rs9040329
https://doi.org/10.1016/j.rse.2012.08.010
https://doi.org/10.1016/j.jag.2005.06.005
https://doi.org/10.1016/S0924-2716(02)00162-4
https://doi.org/10.2136/sssaj2017.02.0067
https://doi.org/10.1080/19479832.2015.1015459
https://doi.org/10.1080/01431161.2010.523727
https://doi.org/10.1371/journal.pone.0162062
https://doi.org/10.1016/j.jas.2013.12.004
https://doi.org/10.1016/j.ancene.2016.07.001
https://doi.org/10.3844/jcssp.2008.706.712
https://doi.org/10.1109/JSTARS.2010.2053700
https://doi.org/10.1109/JSTARS.2010.2053700


International Journal of Remote Sensing 32 (10): 2825–2850. doi:10.1080/
01431161003745608.

Kokalj, Ž., K. Zakšek, and K. Oštir. 2011. “Application of Sky-View Factor for the Visualisation of
Historic Landscape Features in Lidar-Derived Relief Models.” Antiquity 85: 263–273.
doi:10.1017/S0003598X00067594.

Lang, S. 2008. Object-based imageanalysis for remote sensing applications: Modeling reality—
Dealingwith complexity. In Object-Based Image Analysis; Blaschke, T.,Lang, S., Geoffrey, H.,
Eds.; Springer: Heidelberg,Germany; Berlin,Germany; New York, NY, USA,

Lang, S., D. Tiede, D. Hölbling, P. Füreder, and P. Zeil. 2010. “Earth Observation (Eo)-Based Ex
Post Assessment of Internally Displaced Person (IDP) Camp Evolution and Population
Dynamics in Zam Zam, Darfur.” International Journal of Remote Sensing 31 (21): 5709–
5731. doi:10.1080/01431161.2010.496803.

Lang, S. 2008. “Object-Based Image Analysis for Remote Sensing Applications: Modeling Reality
– Dealing with Complexity.” In: Object-Based Image Analysis, edited by T. Blaschke, S. Lang,
and G. Hay. Heidelberg: Springer.

Lasaponara, R., and N. Masini. 2009. “Full-Waveform Airborne Laser Scanning for the Detection of
Medieval Archaeological Microtopographic Relief.” Journal of Cultural Heritage 10: e78–e82.
doi:10.1016/j.culher.2009.10.004.

Leitner, C., H. Peter, and M. Robert. 2014. “3d-Modeling of Deformed Halite Hopper Crystals by
Object Based Image Analysis.” Computers & Geosciences 73 (C): 61–70. doi:10.1016/j.
cageo.2014.08.010.

Liu, Y., L. Bian, Y. Meng, H. Wang, S. Zhang, Y. Yang, X. Shao, and B. Wang. 2012. “Discrepancy
Measures for Selecting Optimal Combination of Parameter Values in Object-Based Image
Analysis.” ISPRS Journal of Photogrammetry and Remote Sensing 68 (2012): 144–156.
doi:10.1016/j.isprsjprs.2012.01.007.

Luo, L., X. Wang, H. Guo, C. Liu, J. Liu, L. Li, X. Du, and G. Qian. 2014. “Automated Extraction
of the Archaeological Tops of Qanat Shafts from VHR Imagery in Google Earth.” Remote
Sensing 6: 11956–11976. doi:10.3390/rs61211956.

Marpu, P. R., M. Neubert, H. Herold, and I. Niemeyer. 2010. “Enhanced Evaluation of Image
Segmentation Results.” Journal of Spatial Science 55 (1): 55–68. doi:10.1080/
14498596.2010.487850.

McCoy, M. D., G. P. Asner, and M. W. Graves. 2011. “Airborne Lidar Survey of Irrigated
Agricultural Landscapes: An Application of the Slope Contrast Method.” Journal of
Archaeological Science 38: 2141–2154. doi:10.1016/j.jas.2011.02.033.

Millard, K., C. Burke, D. Stiff, and A. Redden. 2009. “Detection of a Low-Relief 18th-Century British
Siege Trench Using LiDARVegetation Penetration Capabilities at Fort Beauséjour-Fort Cumberland
National Historic Site, Canada.” Geoarchaeology 24: 576–588. doi:10.1002/gea.v24:5.

Opitz, R. S., K. Ryzewski, J. F. Cherry, and B. Moloney. 2015. “Using Airborne LiDAR Survey to
Explore Historic-Era Archaeological Landscapes of Montserrat in the Eastern Caribbean.”
Journal of Field Archaeology 40: 523–541. doi:10.1179/2042458215Y.0000000016.

Pesaresi, M., G. Huadong, X. Blaes, D. Ehrlich, S. Ferri, L. Gueguen, M. Halkia, et al. 2013. “A
Global Human Settlement Layer from Optical HR/VHR RS Data: Concept and First Results.”
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 6 (5):
2102–2131. doi:10.1109/JSTARS.2013.2271445.

Pesaresi, M., and J. A. Benediktsson. 2001. “A New Approach for the Morphological Segmentation
of High-Resolution Satellite Imagery.” IEEE Transactions on Geoscience and Remote Sensing
39 (2): 309–320. doi:10.1109/36.905239.

Prufer, K., and A. E. Thompson. 2016. “Lidar-Based Analyses of Anthropogenic Landscape
Alterations as a Component of the Built Environment.” Advances in Archaeological Practice
4: 393–409. doi:10.7183/2326-3768.4.3.393.

Raab, T., F. Hirsch, W. Ouimet, K. Johnson, D. Dethier, and A. Raab. 2017. “Architecture of Relict
Charcoal Hearths in Northwestern Connecticut, USA.” Geoarchaeology 32 (4): 502–510.
doi:10.1002/gea.21614.

Randall, A. R. 2014. “LiDAR-aided Reconnaissance and Reconstruction of Lost Landscapes: An
Example of Freshwater Shell Mounds (Ca. 7500–500 Cal B.P.) In Northeastern Florida.”
Journal of Field Archaeology 39: 162–179. doi:10.1179/0093469014Z.00000000080.

GIScience & Remote Sensing 203

https://doi.org/10.1080/01431161003745608
https://doi.org/10.1080/01431161003745608
https://doi.org/10.1017/S0003598X00067594
https://doi.org/10.1080/01431161.2010.496803
https://doi.org/10.1016/j.culher.2009.10.004
https://doi.org/10.1016/j.cageo.2014.08.010
https://doi.org/10.1016/j.cageo.2014.08.010
https://doi.org/10.1016/j.isprsjprs.2012.01.007
https://doi.org/10.3390/rs61211956
https://doi.org/10.1080/14498596.2010.487850
https://doi.org/10.1080/14498596.2010.487850
https://doi.org/10.1016/j.jas.2011.02.033
https://doi.org/10.1002/gea.v24:5
https://doi.org/10.1179/2042458215Y.0000000016
https://doi.org/10.1109/JSTARS.2013.2271445
https://doi.org/10.1109/36.905239
https://doi.org/10.7183/2326-3768.4.3.393
https://doi.org/10.1002/gea.21614
https://doi.org/10.1179/0093469014Z.00000000080


Schneider, A., M. Takla, A. Nicolay, A. Raab, and T. Raab. 2015. “ATemplate-Matching Approach
Combining Morphometric Variables for Automated Mapping of Charcoal Kiln Sites.”
Archaeological Prospection 22: 45–62. doi:10.1002/arp.v22.1.

Serra, J. 1982. Image Analysis and Mathematical Morphology, 621. London: Academic Press.
Smith, A. 2010. “Image Segmentation Scale Parameter Optimization and Land Cover Classification

Using the Random Forest Algorithm.” Journal of Spatial Science 55 (1): 69–79. doi:10.1080/
14498596.2010.487851.

Smith, G. M., and R. D. Morton. 2010. “Real World Objects in GEOBIA through the Exploitation
of Existing Digital Cartography and Image Segmentation.” Photogrammetric Engineering &
Remote Sensing 76 (2): 163–171. doi:10.14358/PERS.76.2.163.

Smits, I., G. Prieditis, S. Dagis, and D. Dubrovskis. 2012. “Individual Tree Identification Using
Different LIDAR and Optical Imagery Data Processing Methods.” Biosystems and Information
Technology 1: 19–24.

Soille, P., and M. Pesaresi. 2002. “Advances in Mathematical Morphology Applied to Geoscience
and Remote Sensing.” IEEE Transactions on Geoscience and Remote Sensing 40 (9): 2042–
2055. doi:10.1109/TGRS.2002.804618.

Tiede, D., S. Lang, D. Hölbling, and P. Füreder. 2010. “Transferability of OBIA Rulesets for IDP
Camp Analysis in Darfur.” In: GEOBIA, edited by E. A. Addink and F. M. B. van Coillie. Vol.
XXXVIII-4/C7. Archives ISSN No 1682-1777. ISPRS. Ghent: Ghent University.

Tong, H., T. Maxwell, Y. Zhang, and V. A. Dey. 2012. “A Supervised and Fuzzy-Based Approach to
Determine Optimal Multi-Resolution Image Segmentation Parameters.” Photogrammetric
Engineering & Remote Sensing 78 (10): 1029–1044. doi:10.14358/PERS.78.10.1029.

Trier, Ø. D., and L. H. Pilø. 2012. “Automatic Detection of Pit Structures in Airborne Laser
Scanning Data.” Archaeological Prospection 19: 103–121. doi:10.1002/arp.v19.2.

Trier, Ø. D., M. Zortea, and C. Tonning. 2015. “Automatic Detection of Mound Structures in
Airborne Laser Scanning Data.” Journal of Archaeological Science: Reports 2: 69–79.
doi:10.1016/j.jasrep.2015.01.005.

Trier, Ø. D., S. Ø. Larsen, and R. Solberg. 2009. “Automatic Detection of Circular Structures in
High-Resolution Satellite Images of Agricultural Land.” Archaeological Prospection 16: 1–15.
doi:10.1002/arp.v16:1.

Trimble Germany GmbH. 2014. eCognition Developer 8.7.2 Reference Book. Germany: Trimble
Germany GmbH.

Verhagen, P., and L. Drăguţ. 2012. “Object-Based Landform Delineation and Classification from
DEMs for Archaeological Predictive Mapping.” Journal of Archaeological Science 39 (3): 698–
703. doi:10.1016/j.jas.2011.11.001.

Vincent, L. 1994. “Morphological Area Openings and Closings for Grey-Scale Images.” In: Shape
in Picture: Mathematical Description of Shape in Grey-Level Images, edited by O. Ying-Lie, A.
Toet, D. Foster, H. J. A. M. Heijmans, and P. Meer, 197–208. Berlin: Springer Berlin
Heidelberg.

Witharana, C., and D. L. Civco. 2014. “Optimizing Multi-Resolution Segmentation Scale Using
Empirical Methods: Exploring the Sensitivity of the Supervised Discrepancy Measure Euclidean
Distance 2 (ED2).” ISPRS Journal of Photogrammetry and Remote Sensing 87: 108–121.
doi:10.1016/j.isprsjprs.2013.11.006.

Witharana, C., and H. Lynch. 2016. “An Object-Based Image Analysis Approach for Detecting
Penguin Guano in Very High Spatial Resolution Satellite Images.” Remote Sensing 8 (5): 375.
doi:10.3390/rs8050375.

204 C. Witharana et al.

https://doi.org/10.1002/arp.v22.1
https://doi.org/10.1080/14498596.2010.487851
https://doi.org/10.1080/14498596.2010.487851
https://doi.org/10.14358/PERS.76.2.163
https://doi.org/10.1109/TGRS.2002.804618
https://doi.org/10.14358/PERS.78.10.1029
https://doi.org/10.1002/arp.v19.2
https://doi.org/10.1016/j.jasrep.2015.01.005
https://doi.org/10.1002/arp.v16:1
https://doi.org/10.1016/j.jas.2011.11.001
https://doi.org/10.1016/j.isprsjprs.2013.11.006
https://doi.org/10.3390/rs8050375

	Abstract
	1.  Introduction
	2.  Materials and methods
	2.1.  Study area and remote sensing data
	2.2.  Data processing
	2.3.1.  Image segmentation
	2.3.2.  RCH modeling workflow
	2.3.3.  Ruleset transferability


	3.  Results
	4.  Discussion
	5.  Conclusion
	Disclosure statement
	Funding
	References



